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Mutagenicity Detection is a Contemporary Issue

ACCC recalls more jeans containing hazardous Potential contamination of Australian metformin medicines

dye linked to cancer

By consumer affairs reporter Amy Bainbridge

Posted Thu 15 May 2014 at 3:53pm, updated Thu 15 May 2014 at 6:34pm

Low levels of contamination with N-nitrosodimethylamine (NDMA)

Published: 18 November 2020
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Textiles recalled after tests for azo Product Safety Recall

L B B B | Do you own this product?

The Laundress Fabric Conditioners
The Laundress brand fabric candiicner products

: wso worws | Sold In varlous sizes and cantainer siyles
Dates s0id: 1 January 2021 - 31 March 2023

Date 15 May 2014

s i

Why the product is recalled: The recalled products can contain a
e

chemical impurty, ethylene ox

Hazard: s @ carcinogen

his chemical thfoLgh inhalaiion durifg Lse of the PraduCt, of trough skin
irect cause

expo:
adverse health effects, inciuding cancer.

Five popular sunscreens recalled after a cancer-
causing ingredient was added to the batches

Five popular Australian sun safety products have been urgently recalled after a cancer-causing ingredient was
detected in the batches.
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Computational Ames Models
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Explosion in Al Research for Pharmacology / Tox
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What Do Existing Models Look Like?

. Team or Institution Name Model Name BA (%) F1 Score
o B I g P | a ye rS MN-AM ChemTunes. ToxGPS Ames NIHS, 2 78.5 0.538
Meiji Pharmaceutical University MMI-STK2 77.0 0.524
* MN-AM — US FDA-affiliated
a I I a e Instem Leadscope Consensus Model 73.7 0.497
°® IVI IT — WO rl d # 1 U n ive rS ity LMC Bourgas University TIMES_AMES 17.17.3 73.3 0.511
Altox Litd. GeneTox-iS 72.6 0.500
Evergreen Al Inc. Avalon 71.9 0.485
([ J O | d A h .t t MultiCASE Inc. PHARM_BMUT V1.8.0.0.17691.350  71.2 0.497
rC I e C u re S Simulations Plus Inc. S+MUT_NIHS _ABC 71.2 0.421
° o C | a S S i C a I m a C h i n e I e a r n i n gH The University of Sydney DRSpicySTiM-Ensemble 70.1 0.425
Lhasa Ltd. Sarah Nexus v.3.0.1 (2068 chemicals) 69.0 0.410
NCTR/FDA DeepAmes 69.1 0.476
(] A t I l TI IVI E S A M E S IRFMN CONSENSUS (18k) V0.9.1 68.1 0.402
u S ra I a u S e S - Liverpool John Moores University DL 68.7 0.403
P CO StS >$ 5 O k / ye a r NIBIOHN GNN(kMoL)_bestbalanced 67.2 0.470
SIOC, CAS CISOC-PSMT (SIOC, CAS, China) 66.4 0.393
. Politecnico di Milano GCN 65.8 0.444
L St' | I n Ot go O d e n O u g h to r‘e p I a C e deaConsult Ltd. AMBIT DeepN v4.85 65.6 0.408
. . . Massachusetts Institute of Technology Chemprop 64.3 0.420
I n v I tro te St | n g Chemotargets CHMT_GBoostSC 64.3 0.414
ISS Mutagenicity ISS-modified2020 62.8 0.348

Gifu University xenoBiotic 0.9q 60.3 0.334




How can we Make the Best Ames Model?

* What models performed best on other biology tasks?

* Benchmark molecular prediction
* Multi-endpoint toxicity prediction

» Use state-of-the-art techniques from Al literature

e Transformers — ChatGPT

* Graph neural networks — Facebook friend recommendation
* Special encodings — Extra chemical information

 Harder math &

* A graph transformer?



Hypotheses

We hypothesise a graph transformer for

.. . Table 3: Results on MolHIV.
Ames mutagenicity will:

method #param. AUC (%)

R GCN-GraphNorm [5, 8] 526K 78.8341.00
]. Be ’rhe most effec’rlve When PNPA[IO] 326K 79.05+1.32
H * k! PHC-GNN [29] 111K 79.3441.16
’rrcuned on the Idrges’r eXISTIng DeeperGCN-FLAG [30] 532K 79.424+1.20
Ames datasets DGN [2] 114K | 79.70=0.97
GIN-VN[54] (fine-tune) 3.3M 77.8041.82

Graphormer-FLAG k4’?".01\/[ 80.51+0.53 ]

. Image: http://arxiv.org/pdf/2106.05234.pdf
2. Achieve state-of-the-art T

o 4o The basis of our
predictive performance architecture!

{'eval_loss': 1.985617117881775, 'eval_accuracy': {'accuracy': ©.52}, 'eval precision': {'precision': ©.52}, 'eval recall': {'rec
all': 1.0}, 'eval f1': {'f1': 0.6842105263157895}, 'eval_runtime': 7.133, ‘eval samples per second': 7.01, ‘'eval_steps per_second M mng Lulgh
': 3.585, ‘epoch': 8.8}

{'loss': 0©.8136, 'learning_rate': 4.375e-85, ‘epoch': 2.8} 80
12% 5/40 [00:-19<01:83, 1.81s/i -~
12%] | 5/40 [00:10<01:0 1.81s/it] U':C




Hence, we aim to: s (Elnn Tl B

e To construct a graph transformer Our research topics
incorporating our lab’s unique
domain knowledge In silico toxicology

Our primary research focus is understanding the adverse effects of chemicals on living
organisms. We employ computer-based in silico methods to predict the interactions
between cellular components and potentially toxic chemicals such as medications,
industrial substances, and l 1l These c i reveal
molecular properties which are modelled to a variety of adverse outcomes including
cancer, immune sensitisation, and endocrine disruption.

e To compare the performance of our
model with others from the
literature

Computer-aided drug design

The knowledge we gain about how chemicals interact with biological systems enables
us to adapt our research to design molecules with therapeutic potential. We utilise in
silico methods to generate drug candidate structures and predict their properties to
quantify how well they work. We have successfully applied our techniques on various
drug classes including anti-malarials and kinase inhibitors.

Translational and regulatory science

A major element of our work is translating our basic research into practical tools that

[o depl thi del lab
. support real world decisions. We actively collaborate with regulatory scientists to
better understand which substances should be prioritised for risk assessment. We also
participate in international predictive toxicology and drug design challenges to

validate our techniques amongst academic and industry standards.

e Enabling regulatory, industrial use Our lab website &




Methods

Understanding Neural Networks



Conventional Neural Networks for Mutagenicity
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The Graph in Graph Transformers
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Methods

Understanding AmesFormer



The Transformer in Graph Transformers

Attention

* Prioritise the most important atomic
features
* Is chirality more important than conjugation?

* Allow the network to always see its local
environment

e Results in much better learned molecular
representations
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Feed Forward Network

The Transformer in Graph Transformers = S
“ S
centrality enCOding Feed Forward i oropet é
* Introduced at the beginning f § §
* Appended to the atom feature vector e P §
* “How many bonds does this atom make?” SoftMax ] S
5 5 Sn::le
hl — hl _|_ Zdeg(vl) “QK MatMuI“

L ¥

[ L L
[ I [
% \ Linearq J’ LiHEarK ’ Linearv ‘Jbaﬂ‘enﬁon
heads

Atom feature vector Bond count

Layer Normalisation

Centrality
Enceding

[ ]

Input Node




The Transformer in Graph Transformers

Spatial encoding

e Biases the attention — The amount each atom
feature attends the others

* “How much does every other atom affect me?

* Upshot: Pay less attention to distant atoms, as
they likely exert less electrostatic forces

Each atom pair

Feed Forward Network

Y ettt
Prediction! “ i !
Ames Positive ' Inear i
! [
T : 1 |
[}
: Dropout :
Feed Forward : :
[ ) ' :
' | AproxGELU | .
QKV MatMul ' :
[}
'y ' :
' . [
Linear
SoftMax | = | 00| NSmm =
* spatial
ES Encoding
Edge
L Encoding
Scale
]
QK MatMul

[

3 [ ]

bt;b(vfa Vj)

L L L
Linearg J- Lineary |H LinearV_Jbaﬂenﬁon
heads

Biasing scalar  Shortest path

distance

[

3

[ ]

[

3

Layer Normalisation

[ ]

Input Node

P—

Centrality
Enceding



Feed Forward Network

The Transformer in Graph Transformers [ ] S :

Ames Positive S0 e :
f l«‘" : T E
Edge enCOding Feed Forward é oropout E
* Biases the attention — “How important —L_ | §
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The Architecture of AmesFormer

NDMA Structure
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Graph Neural Network
Molecular Structure imbued
within the network structure
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Results

Hypothesis 1 — Is more data always better?



Testing Our Hypotheses — Is More Data Better?

e We trained three models — One on each Ames dataset
* Surprisingly, the 29 largest dataset produced the best performing model
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Testing Our Hypotheses — Is More Data Better?

* We trained three models — One on each Ames dataset
* Surprisingly, the 29 largest dataset produced the best performing model

AmesFormer- («&mesFormeD AmesFormer-

Model

Hansen Honma Combined
Mean BA (%) 60.6 +0.1 69.2 +0.1 67.8 0.2
Mean F1 0.320 +0.1 0.426 +0.1 0.414 +0.2
ECE 0.196 £0.159 | 0.197 £0.123 | 0.157 +0.154
Best epoch 80 55 50

Best validation loss 0.492 \ 0.916 ) 0.667




Understanding Our Results — Why isn’t More Data Better?

* The best dataset showed the most chemical diversity — Silhouette Score of 0.488
*  Others had silhouettes of 0.378 and 0.384
* l.e. It covered the broadest range of molecular structures

Ames label
®  Positive
' &  MNegative

0.25

0.20

.15

PC3 (2.23%)

Bean Inter-cluster Tanimoto Distance

=005

Cluster 7 Cluster 6 Cluster 5 Cluster 4 Cluster 3 Cluster 2 Cluster 1
i i i i i [l

' ' =}, (H}
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

(c) Honma dataset PCA. (d) UMAP clusters of the Honma dataset.

CANBERRA | 29-30 AUGUST 2024



Results

Hypothesis 2 — Is Our Model State-of-the-
Art?



Testing Our Hypotheses — Is
Our Model State-of-the-Art?

Our model is the third best
predictor of Ames
mutagenicity

We beat several established
teams & companies

Significant improvement
(3.9%) over previous lab result

Team or Institution Name

Model Name

BA (%) F1 Score

MN-AM

Meiji Pharmaceutical University
Our result

Instem

LMC Bourgas University

Altox Ltd.

Evergreen Al Inc.

MultiCASE Inc.

Simulations Plus Inc.

The University of Sydney

Lhasa Ltd.

NCTR/FDA

IRFMN

Liverpool John Moores University
NIBIOHN

SIOC, CAS

Politecnico di Milano
IdeaConsult Ltd.

Massachusetts Institute of Technology
Chemotargets

ISS

Gifu University

ChemTunes. ToxGPS Ames NIHS, 2
MMI-STK?2
AmesFormer-Pro
Leadscope Consensus Model
TIMES_AMES 17.17.3
GeneTox-iS
Avalon
PHARM_BMUT V1.8.0.0.17691.350
S+MUT_NIHS_ABC
DRSpicySTiM-Ensemble
Sarah Nexus v.3.0.1 (2068 chemicals)
DeepAmes
CONSENSUS (18k) v0.9.1
DL
GNN(kMoL)_bestbalanced
CISOC-PSMT (SIOC, CAS, China)
GCN
AMBIT DeepN v4.85
Chemprop
CHMT _GBoostSC
Mutagenicity ISS-modified2020

xenoBiotic 0.9q

78.5
77.0
74.0
73.7
73.3
72.6
71.9
71.2
71.2
70.1
69.0
69.1
68.1
68.7
67.2
66.4
65.8
65.6
64.3
64.3
62.8
60.3

0.538
0.524
0.479
0.497
0.511
0.500
0.485
0.497
0.421
0.425
0410
0.476
0.402
0.403
0.470
0.393
0.444
0.408
0.420
0414
0.348
0.334




Understanding Our Results — Why is AmesFormer so Good?

e Representational Power
. We can always tell different molecules apart

. Earlier models use those “bit vectors”, these are condensed
representations of the molecule

. Hence, similar, but pharmacologically distinct molecules can
produce the same vector, and thus same prediction, despite
differing toxicity

. This is known as bit clashing

Why doesn’t AmesFormer suffer the same problem?



Understanding Our Results — Why is AmesFormer so Good?

1. Representational Power via the W-L Test
. We avoid this problem using our spatial encoding

. The spatial encoding is equivalent to the shortest-path-enhanced
Weisfeiler-Lehmen graph isomorphism test

. An inductive proof is available in Chengxuan, et al. 2021

A.1 SPD can Be Used to Improve WL-Test

L1 Dol

Figure 2: These two graphs cannot be distinguished by 1-WL-test. But the SPD sets, i.e.,
the SPD from each node to others, are different: The two types of nodes in the left graph




Understanding Our Results — Why is AmesFormer so Good?

2. Representational Power via the Graph Laplacian

. Our GNN can differentiate any two graphs which differ in the
spectral properties of their graph Laplacian

. A constructive proof is shown in Kanatsoulis & Ribeiro, 2023

Laplacian L of a graph G is defined as:

L=D-A, (4.3)

where D is the degree matrix and A is the adjacency matrix. Two graphs G and G’ are distinguished if

their Laplacians have different eigenvalues:

A;(G) # A;(G") for some eigenvalue A;. (4.4)



Understanding Our Results — Why is AmesFormer so Good?

TITLE

3. The Power of the Transformer

* Transformers have come to dominate complex ML tasks

e Text—- 2017, Vaswani

* Vision = 2019, Ramachandran

*  Previous good results in non-mutagenicity QSAR:s.

*  Perhaps unsurprising they also perform well for Ames

Attention is all you need

A Vaswan
Advances

n Meural Information Processing Sy

stems

CITED BY

136231

Ay They're this good!
2017




Certainty

How do we Know These Results are
Accurate?



Bayesian Uncertainty Estimation via MC Dropout

" We use Monte Carlo (MC) dropout to generate Cls for
our results — BAC
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Bayesian Uncertainty Estimation via MC Dropout

" We use Monte Carlo (MC) dropout to generate Cls for
our results — F1

=

@ 1.01 -+ Perfectly calibrated
-LUU AmesFormer-Honma
® 0.8 Median Calibration
-

3

8

& 0.6 1

w)

o

2

= 0.4+

[72]

o

2,

[

©0.2

=

=

+3

&

© 0.0

o

00 02 04 06 08 1.0
Mean predicted probability (Positive class: 1)
(b) The median calibration curve of AmesFormer-

Honma over 1000 Monte Carlo dropout samples with

an associated|Ef Eof 0.197 (95% CI: 0.087, 0.333).



Bayesian Uncertainty Estimation via MC Dropout

= But...

We can extend this methodology to the regulatory context by

sampling the uncertainty of our inference (l.e., when we are
using the model live)

Over 1000 passes we are integrating under the distribution
of predictions to gauge our uncertainty

We can therefore sample our uncertainty for the prediction
of that particular chemical

Recommended by the OECD QSAR Reporting Guideline



Bayesian Uncertainty Estimation via MC Dropout

Feed Forward Network
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Bayesian Uncertainty Estimation via MC Dropout

Feed Forward Network
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Bayesian Uncertainty Estimation via MC Dropout

Molecule Pass 1




Bayesian Uncertainty Estimation via MC Dropout

Molecule Pass 2




Bayesian Uncertainty Estimation via MC Dropout

Molecule Pass 3




Future Directions
One Hard Thing That Sounds Easy



Future Directions — Taking the #1 Spot

 Our performance is very good, but two models are better — Why?

e Both better models are “ensembles”

 Combinations of multiple different models — Logistic regression,
simpler graphs, etc

* These models can see whole graph properties — Solubility, etc

* AmesFormer cannot see these properties, it only sees the more
detailed atom and bond information

How can we incorporate these whole molecule properties
into AmesFormer?



Future Directions — Taking the #1 Spot

It's tough...

Node-wise Approach

Add whole-graph data to each
atom

Pros
* Done in literature (GraphGPS)

* Trivial to implement
Cons

* Massive data duplication — There’s
only one set of graph properties, but
we add them to every node

* Computationally inefficient

Attentional Approach

Add whole-graph data to the
graph attention calculation

Pros

* No duplication — Improved efficiency
Cons

* Unproven

* Hard to implement

* Network can’t “see” whole-graph data
before attention, less opportunities to
incorporate it into the molecular
representation



Future Directions
One Easy(ish) Thing That Sounds Hard



Future Directions — Improving Accessibility

 Our models are relatively efficient, but still required days to
train on a SUS 2000 graphics card
 More complex tasks would take considerably be longer
 Multiple endpoint toxicity or ADME

* This is out of reach for many small academic labs &
startups

How can we make our model more computationally efficient
and accessible to compute-poor users?



Future Directions — Improving Accessibility

* |mprove attention
* The most computationally expensive part of AmesFormer

* Currently, we do multiple attention calculations in parallel

* Each attention head learns different things to “attend” — Great performance!
 Butdo all heads actually learn to attend something valuable?
* No-So0, can we:

e Remove useless heads, retain the good ones?

 Maintain the same performance whilst improving computational
efficiency?

We can use GFiSH-Former by Tan, et al. 2022 to accompish this



Future Directions — Improving Accessibility

1. Eigenvalue decomposition — Attention covariance matrices
are low-rank @
* |.e., Most of the information in them is useless, we only need the
most important 10%

2. Calculate ~3 heads — This should be enough to capture ~90%
of variance

* Way less than the 32 currently calculated for AmesFormer

3. Calculate the remaining 29 as a finite admixture of those 3



Future Directions — Improving Accessibility

The head we’re calculating
E.g., head 4

M
: Z gb(pkj(QkKkT + 0 © ej)), e ~N(0,1),
k=1

Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

Is a mixture of our 3
main heads M

A; = ook (QuKi " + 0k © ), € ~N(0,T),

Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

With a non-linear transformation

E.g., Gaussian

M
Aj = Z%pkj(QkKkT + 01 ©¢€j)), €~N(0,I),
k=1

Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

Weighted by a parameter determing much
each of the 3 main heads should contribute

Zgb QiK; | + 05 @), €~ N(0,I),

Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

Where this is the actual content of the
main head (e.g., head 2)

M

Aj=) ¢<ijkoqu +ok ©€5)), €~N(0,1),

k=1

Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions — Improving Accessibility

Perturbed by some isotropic Gaussian noise sampled from a
distribution with mean O and covariance of the identity matrix

\

M
A= d(pr;(QuKr" +How @¢))), € ~N(0,T))
k=1

Image: https://openreview.net/pdf?id=0VFQhPGF1M3



Future Directions

With these improvements we
can:

* Improve performance
* Democratise access to QSAR

* |mprove regulatory outcomes

Video: https://youtu.be/eMIx5fFNoYc?si=NKgOvfLV9cDTMcWi



Summary

Ames is important for public safety
We take advantage of the recent explosion in Al research & apply it to Ames
Our graph transformer is state-of-the-art

Serious potential for regulatory application
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